skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Biswas, Sounak"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The physics of complex systems stands to greatly benefit from the qualitative changes in data availability and advances in data-driven computational methods. Many of these systems can be represented by interacting degrees of freedom on inhomogeneous graphs. However, the lack of translational invariance presents a fundamental challenge to theoretical tools, such as the renormalization group, which were so successful in characterizing the universal physical behaviour in critical phenomena. Here we show that compression theory allows the extraction of relevant degrees of freedom in arbitrary geometries, and the development of efficient numerical tools to build an effective theory from data. We demonstrate our method by applying it to a strongly correlated system on an Ammann-Beenker quasicrystal, where it discovers an exotic critical point with broken conformal symmetry. We also apply it to an antiferromagnetic system on non-bipartite random graphs, where any periodicity is absent. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. We develop a formalism for computing the nonlinear response of interacting integrable systems. Our results are asymptotically exact in the hydrodynamic limit where perturbing fields vary sufficiently slowly in space and time. We show that spatially resolved nonlinear response distinguishes interacting integrable systems from noninteracting ones, exemplifying this for the Lieb–Liniger gas. We give a prescription for computing finite-temperature Drude weights of arbitrary order, which is in excellent agreement with numerical evaluation of the third-order response of the XXZ spin chain. We identify intrinsically nonperturbative regimes of the nonlinear response of integrable systems. 
    more » « less